Welcome visitor you can log in or create an account


Consumer Insights. Market Innovation.

Recent blog posts

economistOver the years our clients have increasingly looked to us to condense results. Their internal stakeholders often only read the executive summary and even then they might only focus on headlines and bold print. Where in the past they might have had time to review hundreds of splits of Max-Diff data or simulations in a conjoint, they now want us to focus our market research reporting on their business question and to answer it as concisely as possible. All of that makes perfect sense. For example, wouldn’t you rather read a headline like “the Eight Richest People in the World Have More Wealth than Half the World’s Population” than endless data tables that lay out all the ways that wealth is unfairly distributed? I know I would…if it were true.

The Economist Magazine did an analysis of the analysis that went into that headline-grabbing statement from Oxfam (a charity). The results indicate a number of flaws that are well worth understanding.

•    They included negative wealth. Some 400 million people have negative wealth (they owe more than they own). So it requires lots of people with very low positive net worth to match the negative wealth of these 400 million people…thus making the overall group much larger than it might have been.    

•    For example, there are 21 million Americans with a net worth of over $350 Billion. Most of them would not be people you might associate with being very poor…rather they have borrowed money to make their lives better now with the plan to pay it off later.

•    They were looking at only material wealth…meaning hard assets like property and cash. Even ignoring wealth like that of George Baily (“The richest man in town!”), each of us possesses wealth in terms of future earning potential. Bill Gates will still have more wealth than a farmer in sub-Saharan Africa, but collectively half the world’s population has a lot of earnings potential.


recycle market research pricingIn my two previous blogs about recycling, I reported on gender gaps in recycling behavior and general knowledge about what is curbside-recyclable and what isn't.

Now we turn to the real question: why aren't consumers recycling on a more consistent basis? Again we turned to our online consumer research panel and asked those with curbside recycling access who don't recycle regularly a simple question: Why not? What behaviors and attitudes can Recyclers act upon to educate their customers and encourage more recycling?

Well, like any complex problem, there's no one single answer. Lack of knowledge of what's recyclable and being unsure how to get questions answered play a big part (28%). Recyclers can raise awareness through careful and consistent messaging.

But just as significant as knowledge is overcoming basic laziness (29%). Sorting your recycling from your trash takes effort, and not everyone is willing to expend energy to do so. Recyclers may not be able to motivate them, but another concern is addressable, and that's scheduling – having trash and recycling pick-up on different days can de-motivate consumers to recycle (15%).

Another challenge is forgetfulness. Some folks are willing to recycle, but it slips their mind to do so (25%).
Education could help promote a feeling of responsibility and elevate recycling's importance:

•  I don't feel that whether or not I recycle makes a difference (14%)
•  Recycling isn't important to me (10%)
•  I'm not convinced recycling helps the environment (8%)


pets pricing-researchIn a recent survey we conducted among pet owners, we asked about microchip identification. We found that cat owners and dog owners are equally likely to say that having their pet microchipped is a necessary component of pet ownership. That’s the good news.

The bad news is that when it comes time to doing it, the majority haven’t taken that precaution. 69% of the cat owners and 64% of the dog owners we surveyed say they haven’t microchipped their companion.

Why is microchipping so important?  Petfinder reports that The American Humane Association estimates over 10 million dogs and cats are lost or stolen in the US every year, and that 1 in 3 pets will become lost at some point during their lifetime. ID tags and collars can get lost or removed, which makes microchip identification the best tool shelters and vets use to reunite pets with their owners.

One barrier to microchipping is cost – it runs in the $25 to $50 dollar range for dogs and cats. Not a staggering amount, but pet ownership can get expensive – with all the “stuff” you need for your new friend, this can be a cost some people aren’t willing to bear. Vets, shelters and rescue groups sometimes discount their pricing when the animal is receiving other services, such as vaccines. Which begs the question, if vets want their patients to be microchipped, what’s the best way for them to price their services to make this important service more likely to be included?

It seems that pet microchipping would benefit from some pricing research. Beyond simply lowering the price, bundle offers may hold more appeal than a la carte. Then again, a single package price may be so high that it dissuades action altogether. Perhaps financing or staggered payments would help. And of course, discounts on other services, or on the service itself, may influence their decision. All of these possibilities could be addressed in a comprehensive pricing survey. We could use one of our pricing research tools, such as conjoint, to achieve a solid answer.


Brand PerceptionsIs the Mini Cooper seen as an environmentally friendly car? What about Tesla as a luxury car? The traditional approach to understanding these questions is to conduct a survey among Mini and Tesla buyers (and perhaps non-buyers too, if budget allows). Such studies have been conducted for decades and often involve ratings of multiple attributes and brands. While certainly feasible, they can be expensive, time consuming and can get outdated over time. Is there a better way to get at attribute perceptions of brands that can be fast, economical and automated?

Aron Culotta and Jennifer Cutler describe such an approach in a recent issue of the INFORMS journal Marketing Science, and it involves the use of social media data – Twitter, in this case. Their method is novel because it does not use conventional (if one can use that term here) approaches to mining textual data, such as sentiment analysis or associative analysis. Sentiment analysis (social media monitoring) provides reports on positive and negative sentiments expressed online about a brand. In associative analysis, clustering and semantic networks are used to discover how product features or brands are perceptually clustered by consumers, often using data from online forums.

Breaking away from these approaches the authors use an innovative method to understand brand perceptions from online data. The key insight (drawn from well-established social science findings) is that proximity in a social network can be indicative of similarity. That is, understanding how closely brands are connected to exemplar organizations of certain attributes, it is possible to devise an affinity score that shows how highly a brand scores on a specific attribute. For example, when a Twitter user follows both Smart Car and Greenpeace, it likely indicates that Smart Car is seen as eco-friendly by that person. This does not have to be true for every such user, but at “big data” levels there is likely to be a strong enough association to extract signal from the noise.   

What is unique about this approach to using social media data, is that it does not really depend on what people say online (as other approaches do). It only relies on who is following a brand while also following another (exemplar) organization. The strength of the social connection becomes a signal of the brand’s strength on a specific attribute. “Using social connections rather than text allows marketers to capture information from the silent majority of brand fans, who consume rather than create content,” says Jennifer Cutler, who teaches marketing at the Kellogg School of Management in Northwestern University.

Sounds great in theory, right? But how can we be sure that it produces meaningful results? By validating it with the trusted survey data that has been used for decades. When tested across 200+ brands in four sectors (Apparel, Cars, Food & Beverage, Personal Care) and three perceptual attributes (Eco-friendliness, Luxury, Nutrition), an average correlation of 0.72 shows that social connections can provide very good information on how brands are perceived. Unlike with survey data, this approach can be run continuously, at low cost with results being spit out in real time. And there is another advantage. “The use of social networks rather than text opens the door to measuring dimensions of brand image that are rarely discussed by consumers in online spaces,” says Professor Cutler.


pollsters-went-wrongThe surprising result of the election has lots of people questioning the validity of polls…how could they have so consistently predicted a Clinton victory? Further, if the polls were wrong, how can we trust survey research to answer business questions? Ultimately even sophisticated techniques like discrete choice conjoint or max-diff rely upon these data so this is not an insignificant question. 

As someone whose firm conducts thousands and thousands of surveys annually, I thought it made sense to offer my perspective. So here are five reasons that I think the polls were “wrong” and how I think that problem could impact our work.



5 Reasons Why the Polls Went 'Wrong'

1) People Don’t Know How to Read Results
Most polls had the race in the 2-5% range and the final tally had it nearly dead even (Secretary Clinton winning the popular vote by a slight margin). At the low end, this range is within the margin of error. At the high end, it is not far outside of it. Thus, even if everything else were perfect, we would expect that the election might well have been very close.  


2016 election sample representativenessI always dread the inevitable "What do you do?" question. When you tell someone you are in market research you can typically expect a blank stare or a polite nod; so you must be prepared to offer further explanation. Oh, to be a doctor, lawyer or auto mechanic – no explanation necessary!

Of course, as researchers, we grapple with this issue daily, but it is not often we get to hear it played out on major news networks. After one of the debates, I heard Wolf Blitzer on CNN arguing (yes arguing) with one of the campaign strategists about why the online polls being quoted were not "real" scientific polls. Wolf's point was that because the Internet polls being referenced were from a self-selected sample their results were not representative of the population in question (likely voters). Of course, Wolf was correct, and it made me smile to hear this debated on national TV.

A week or so later I heard an even more, in-depth consideration of the same issue. The story was about how the race was breaking down in key swing states. The poll representative went through the results for key states one-by-one. When she discussed Nevada she raised a red flag as to interpreting the poll (which has one candidate ahead by 2 - % points). She further explained it is difficult to obtain a representative sample in Nevada due to a number of factors (odd work hours, transient population, large Spanish speaking population). Her point was that they try to mitigate these issues, but any results must be viewed with a caveat.

Aside from my personal delight that my day-to-day market research concerns are newsworthy, what is the take-away here? For me, it reinforces how important it is to do everything in our power to ensure that for each study our sample is representative. The advent of online data collection, the proliferation of cell phone use and do-it-yourself survey tools may have made the task more difficult, but no less important. When doing sophisticated conjoint, segmentation or max-diff studies, we need to keep in mind that they are only as good as the sample that feeds them.

Hits: 477 0 Comments

Recycling market researchIn my previous blog, we determined that people with access to recycling services don’t necessarily recycle. And men were far less likely to recycle regularly than women.

One problem potential recyclers face is there is no federal standard for what is collected and how. Services vary from one contractor to the next. Items deemed recyclable in one municipality may not be the next town over. As a general rule, bottles, cans, and newspapers are curbside-recyclable. Also as a general rule, prescription drugs, electronic devices, CFL bulbs and batteries are not – they shouldn’t go in the trash either - they require special handling.  But does the average consumer know this? We asked our online panelists who have access to recycling services how they believe their trash/recycling haulers would like them to handle certain items. And here’s what we learned:

  • Knowledge of recycling the Big-3 (glass bottles – aluminum cans – newspapers) is quite high. At least 80% of our panelists with access to recycling services know each of these should be recycled as opposed to trashed. And men and women are equally knowledgeable.
  • Word has spread that electronics do not belong in the trash. But our consumers are divided as to where they should go – 35% believe their contractor wants them in their recycling bin while just 46% believe electronics require special arrangements.
  • When we get to other items, things get a bit murky:
    1. Our panelists are as likely to believe that batteries can go out in the trash or recycling (45%) as believe batteries require special arrangements (41%). The rest aren’t sure.
    2. 19% aren’t sure what to do with compact fluorescent light bulbs.
    3. 22% believe that prescription drugs can be put out in the trash. 17% aren’t sure.
  • Meanwhile, some items that are traditionally “trashed” make consumers take pause – 26% of our consumers believe their hauler wants them to recycle linens and towels.

Focusing solely on those who say they recycle, women are more likely than men to know what goes where…

Recycling Market Research part2

Ladies, you may want to re-think having your gents handle the trash and recycling - or give them a quick lesson on what you've learned!

Hits: 604 0 Comments

Do Americans Recycle Enough? - PART I

Posted by on in Consumer Behavior

access to recycling utilityAccording to Economist.com, Americans aren’t doing a good job of recycling.  There is actually a shortage of materials from recycling facilities that could be used to produce new products. The author posits that there are a variety of reasons for this, including simple access: “a quarter of Americans lack access to proper bins for collecting recyclable material, and another quarter go without any curbside recycling at all.”  But I think it goes beyond access, and I surveyed our intrepid online panel of adult consumers to find out.

A little over a quarter (28%) of TRC’s panelists say they do not have residential recycling service. Increasing awareness and access for rental properties would certainly make a dent: renters are more likely to say they don’t have it (44%) than homeowners (19%).

But what if you are aware and have access?  Does that mean you’re recycling?  Not necessarily.  Only 75% of those who could be recycling are doing so on a regular basis (usually or always). There’s no difference between renters and homeowners with recycling access as far as how often they recycle. But there is one key difference between those who regularly do and those who don’t: gender. Women are far more likely to say that they recycle regularly (84%) than men (62%). I’m not sure why there is a gender disparity, but we’ll explore how knowledgeable men and women are about recycling in my next blog.

Hits: 483 0 Comments

new product pricing research ebayI’ve become a huge fan of podcasts, downloading dozens every week and listening to them on the drive to and from work. The quantity and quality of material available is incredible. This week another podcast turned me on to eBay’s podcast “Open for Business”. Specifically the title of episode three “Price is Right” caught my ear.   
While the episode was of more use to someone selling a consumer product than to someone selling professional services, I got a lot out of it.
First off, they highlighted their “Terapeak” product which offers free information culled from the massive data set of eBay buyers and sellers. For this episode they featured how you can use this to figure out how the market values products like yours. They used this to demonstrate the idea that you should not be pricing on a “cost plus” basis but rather on a “value” basis.
From there they talked about how positioning matters and gave a glimpse of a couple market research techniques for pricing. In one case, it seemed like they were using the Van Westendorp. The results indicated a range of prices that was far below where they wanted to price things. This led to a discussion of positioning (in this case, the product was an electronic picture frame which they hoped to be positioned not as a consumer electronic product but as home décor). The researchers here didn’t do anything to position the product and so consumers compared it to an iPad which led to the unfavorable view of pricing.  
Finally, they talked to another researcher who indicated that she uses a simple “yes/no” technique…essentially “would you buy it for $XYZ?” She said that this matched the marketplace better than asking people to “name their price”.  
Of the two methods cited I tend to go with the latter. Any reader of this blog knows that I favor questions that mimic the market place vs. asking strange questions that you wouldn’t consider in real life (what’s the most you would pay for this?”). Of course, there are a ton of choices that were not covered including conjoint analysis which I think is often the most effective means to set prices (see our White Paper - How to Conduct Pricing Research for more).
Still there was much that we as researchers can take from this. As noted, it is important to frame things properly. If the product will be sold in the home décor department, it is important to set the table along those lines and not allow the respondent to see it as something else. I have little doubt if the Van Westendorp questions were preceded by proper framing and messaging the results would have been different.
I also think the use of big data tools like Terapeak and Google analytics are something we should make more use of.  Secondary research has never been easier!  In the case of pricing research, knowing the range of prices being paid now can provide a good guide on what range of prices to include in, say, a Discrete Choice exercise. This is true even if the product has a new feature not currently available. Terapeak allows you to view prices over time so you can see the impact of the last big innovation, for example.
Overall, I commend eBay for their podcast. It is quite entertaining and provides a lot of useful information…especially for someone starting a new business.

Hits: 899 0 Comments

storytelling market researchMany researchers are by nature math geeks. We are comfortable with numbers and statistical methods like regression or max-diff. Some find the inclusion of fancy graphics as just being a distraction...just wasted space on the page that could be used to show more numbers! I've even heard infographics defined as "information lite". Surely top academics think differently!
No doubt if you asked top academics they might well tell you that they prefer to see the formulas and the numbers and not graphics. This is no different than respondents who tend to tell us that things like celebrity endorsements don't matter until we use an advanced method like discrete choice conjoint to prove otherwise.
Bill Howe and his colleagues at the University of Washington in Seattle, figured out a way to test the power of graphics without asking. They built an algorithm that could distinguish, with a high degree of success, between diagrams, equations, photographs and plots (bar charts for example) and tables. They then exposed the algorithm to 650,000 papers with over 10 Million figures in them.
For each paper they also calculated an Eigenfactor score (similar to what Google uses for search) to rate the importance of each paper (by looking at how often the paper is cited).
On average papers had 1 diagram for every three pages and 1.67 citations. Papers with more diagrams per page tended to get 2 extra citations for every additional diagram per page. So clearly, even among academics, diagrams seemed to increase the chances that the papers were read and the information was used.
Now we can of course say that this is "correlation" and not "causation" and that would be correct. It will take further research to truly validate the notion that graphics increase interest AND comprehension.
I'm not waiting for more research. These findings validate where the industry has been going. Clients are busy and their stakeholders are not as engaged as they might have been in the past. They don't care about the numbers or the formulas (by the way, formulas in academic papers reduced the frequency with which they were cited)...they care about what the data are telling them. If we can deliver those results in a clear graphical manner it saves them time, helps them internalize the results and because of that increases the likelihood that the results will be used.

So while graphics might not make us feel smart...they actually should.

Hits: 1047 0 Comments

conjoint-vs-configuratorWe at TRC conduct a lot of marketing research projects using Conjoint Analysis. Conjoint is a very powerful tool for determining preferences for the various components that make up a product or service. The power of Conjoint comes from having consumers make mental trade-offs in evaluating products against each other. Do they prefer a lower cost product that contains few features, or a higher priced product that provides many benefits? How willing are they to choose a product that meets 2 or 3 of their criteria, but not all? Conjoint forces consumers to make these decisions, and the results can then be simulated to determine purchase preferences in a variety of scenarios.
But not all product development problems can be solved with Conjoint. Conjoint requires certain steps in the development cycle to have already been taken (defined features, some idea of pricing – see my previous blog on the topic.) In some cases, though, you may be at a stage in which Conjoint is feasible, but a different approach may be more appropriate, such as a Configurator. In a Configurator, otherwise known as a "Build-Your-Own" approach, you would use the same product features as in a Conjoint, but instead of pitting potential products against one another, the consumer "builds their own" ideal product.
So why choose one technique over the other? There are many reasons, but here are a few:
1. If determining overall product price sensitivity is the goal – Choose Conjoint. Conjoint will produce scores that assess both the importance of price overall as well as price tolerance for the product as features are included or excluded.
2. If you just want to know which features are the most popular, or which ones are selected when choosing or not choosing other features – Choose Configurator. In an a la carte scenario, respondents can choose which items to throw in their shopping cart and which ones to leave on the shelf. Getting simple counts on which features are popular and which ones are not – and in what combinations – can be very useful information, and it's an easier task for respondents. Keep in mind though that the Configurator works best if each feature is pre-assigned a price (to keep respondents from piling on).
3. If understanding competitive advantage/disadvantage is paramount – Choose Conjoint. Conjoint allows you to include "Brand" as a feature, and the results will link brand to the product price to see if respondents are willing to pay more (or less) for your product vs. that of a key competitor. You can also simulate competitive market scenarios. While you can include Brand in a Configurator, modeling the trade-off between brand and product price is far less robust.
4. If you have a lot of features, or complex relationships between the features - Choose Configurator. It's much easier for a respondent to sift through a long list of features and build their ideal product just once than to choose between products with a gigantic feature list multiple times. Conjoint works best when the features are not dependent on one another; a long list of restrictions on the features can disqualify Conjoint as a viable solution from a design perspective.
There are plenty of times when a technique may present itself as an obvious choice, and other times when the choice may be more subtle. And in those cases, we turn to our senior analysts who use their expertise and understanding of the research objectives to make sound recommendations.

Hits: 1099 0 Comments

when not to use conjointAt the beginning of my research career I grew accustomed to clients asking us for proposals using a methodology that they had pre-selected. In many cases, the client would send us the specs of the entire job, (this many completes, that length of survey) and just ask us for pricing. While this is certainly an efficient way for a client to compare bids across vendors, it didn’t allow for any discussion as to the appropriateness of the method being proposed.  
Today most research clients are looking for their research suppliers to be more actively involved in formulating the research plan. That said, we are often asked to bid on a “conjoint study.”  Our clients who’ve commissioned conjoint work in the past are usually knowledgeable about when a conjoint is appropriate, but sometimes there is a better method out there. And sometimes the product simply isn’t at the right place in the development “chain” to warrant conjoint.
Conjoint, for the uninitiated, is a useful research tool in product development. It is a choice-based method that allows participants to make choices between different products based on the product’s make-up. Each product comprises various features and levels within those features. What keeps respondents from choosing only products made up of the “best” features and levels is some type of constraint – usually price.   
We look to conjoint to help determine an optimal or ideal product scenario, to help price a product given its features, or to suggest whether a client could charge a premium or require a discount.  It has a wide range of uses, but it isn’t always a good fit:  

  1.  When the features haven’t been defined yet. One problem product developers face is having to “operationalize” something that the market hasn’t seen yet. You need to be able to describe a feature, what its benefits are, and its associated levels in layman’s terms. We can’t recommend conjoint if the features are still amorphous.   
  2. When there are a multitude of features with many levels or complex relationships between the features. The respondent needs to be able to absorb and understand the make-up of the products in order to choose between them. If the product is so complex that it requires varying levels of a lot of different features, it’s probably too taxing for the respondents (and may tax the design and resulting analysis as well). Conjoint could be the answer – but the task may need to be broken up into pieces.   
  3. When there are a limited number of features with few levels. In this case, Conjoint may be overkill. A simple monadic concept test or price laddering exercise may suffice.   
  4. When pricing is important, but you have absolutely no idea what the price will be. Conjoint works best when the product’s price levels range from slightly below how you want to price it to slightly above how you want to price it.  If your range is huge, respondents will gravitate toward the lower priced product scenarios and you won’t get much data on the higher end. It may also confuse respondents that similar products would be available at such large price differences.
Hits: 1191 0 Comments

When working with clients on parameters for a conjoint design, there is often an assumption that the design includes a current product configuration, or base case. This base case provides a benchmark against which new configurations can be compared.  
Having a benchmark can be both useful and comforting when analyzing the conjoint results. Replicating a base case allows us to reference important metrics that are known for that product (for example, market share, CPU, revenue, etc.). As we configure new products and compare their appeal to our base case, we can gain insight into how these key metrics might be impacted.
Aside from establishing a benchmark, having a base case is also critical if there is concern about cannibalization.  If the expectation for the new product is that it will compete in the market with a current configuration it is critical to understand what impact the new product will have on the current landscape.
However, allowing for a base case in the conjoint design is not always warranted. As products become more dissimilar from current offerings it can become difficult to include a base case. Trying to integrate the components of a current and new product that don’t share many characteristics can lead to conjoint parameters that are too complex to administer, or create apples to oranges comparisons. It is not wrong to leave out a base case as long as it is understood there will be no benchmark comparison.
One hybrid solution to consider is to allow for a set choice that reads something like “None of these, prefer the PRODUCTS currently available”. This is similar to a typical “none” option in the conjoint but provides a bit more information; specifically, that they would not leave the category but are not interested in the new, very different product configuration. Of course this solution would not be appropriate in all instances but does provide a good compromise.
Ultimately, the extent to which “real products” are modeled with a conjoint study’s parameters is a function of the specific information needs and the complexity of the design. Most of the time we want to include that dose of “reality” in our design but don’t be afraid to leave it behind if warranted.

conjoint analysis design

Hits: 1080 0 Comments

GRIT-50-LogoTRC is proud to announce that it was voted as one of the top 50 innovative firms on the market research supplier side. We’re big believers in trying to advance the business of research and we’re excited to see that the GRIT study recognized that.

Our philosophy is to engage respondents using a combination of advanced techniques and better interfaces. Asking respondents what they want or why without context leads to results that overstate real preferences (consumers, after all, want “everything”) and often miss what is driving those decisions (Behavioral Economics tells us that we often don’t know why we buy what we buy).

Through the use of off-the-shelf tools like Max-Diff or the entire family of conjoint methods, we can better engage respondents AND gather much more actionable data. Through these tools and some of our own innovations like Bracket™ we can efficiently understand real preference and use analytics to tell us what is driving them.

Our ongoing long-terms partnerships with top academics at universities throughout the country also help us stay innovative. By collaborating with them we are able to drive new innovations that better unlock what drives consumers.

The GRIT study tracks which supplier firms are perceived as most innovative within the global market research industry. It’s a brand tracker using the attribute of ‘innovation’ as the key metric. The answers are gathered on an unaided basis. The survey asks to list top 3 research companies respondents consider innovative, then asks to rank the companies from least to most innovative and finally asks for explanation why they think they are innovative. Given the unaided nature of the study, it is quite an achievement for a firm like TRC to make the same list as firms hundreds of times our size.


My friend and I don’t share the same definition of what it means to be on-time. I don’t necessarily subscribe to the “early is on-time, on-time is late, late is unacceptable” theory, but I do try to arrive at or before an agreed upon time. She thinks there is wiggle room surrounding any appointment time – 5 or 10 minutes – and doesn’t seem concerned that I’ve been waiting for her to arrive. The good news is, if I’m running behind schedule, it doesn’t bother her that I arrive late. But if I’m going to be 5 to 10 minutes late, I’ll notify her. She would never think to do the same – because in her mind she’s on-time.

Perhaps I have too strict a definition of what it means to be on-time. Is 5 minutes considered late to everyone or just to me? We surveyed TRC’s online consumer panel to get an answer.

We used 5 minutes as our test case. If an appointment time is at 9:00 and actual arrival is 9:05, do you consider yourself on-time or late (or early)? To make things interesting, we asked about a variety of scenarios, since it’s possible that definitions may change based on the social situation.

If your boss calls an urgent meeting and you arrive 5 minutes past the start time, 2/3 of our participants consider that to be “late”.  When I saw that, at first I felt vindicated. But then I realized that if 2/3 are saying they’re late, that means 1/3 say it’s okay – 5 minutes is on-time or even early. Then I looked at the rest of the scenarios: 2/3 consider 5 minutes as “late” for babysitting or for a weekly religious service. If you show up 5 minutes after your reservation time at a restaurant, only 57% consider that to be late. And if you’re meeting a friend for casual dinner (no reservations), only 47% -- less than half of the adults we surveyed -- believe that 5 minutes off-schedule is actually “late”. What’s this world coming to?

being late infographics TRC


Check out the infographic below to see how others learned another language.

Presenting data in an infographic format is like speaking another language. People who didn't understand you before, now can. All of a sudden, they can so clearly see the data points you had been trying to communicate. And just like learning a new language, converting data into infographics  can be daunting - yet the benefits are endless. Mainly, they open up new perspectives. At TRC we can help you overcome this hurdle. We produce infographics as part of our project deliverables.

learning language conjoint analysis


Hits: 1122 0 Comments

Catalog coverIf you open your mailbox today, chances are that there will be a catalog in it. Even with the explosion in online purchasing, paper catalogs continue to be an important part of the retail marketing mix. Whether they spur traditional mail- or telephone-ordering or, more often now, online purchasing and even foot traffic in brick and mortar stores, catalogs remain critical for retailers. They not only show consumers what is available, but they also serve as an important branding tool.
Even if the recipient does not open or thoroughly review a catalog, its cover, its size and the kind of paper it is printed on can all telegraph meaning about the sender's brand.
But isn't there much more to be gained if the consumer does open the catalog?

How Can Marketers Maximize the Likelihood that a Catalog Is Opened?

Based on an online survey among a panel of consumers nationwide, TRC estimates that the average household receives 3.7 catalogs per week.  That is nearly 200 in the course of a year!
So how can catalog marketers break through the mailbox clutter and inspire consumers to look at what is actually inside their materials? We asked our national panel about some factors that influence their decisions to open (or not open) a catalog they receive. A key learning is something catalog marketers would certainly confirm: targeting is critical. Product interest and perceived need account for a large share of the decision to open a catalog, so getting the catalog to the right person is of course essential.
But once the catalog is in the right mailbox, it is clear that what the recipient sees on its cover will be important in whether or not the catalog is opened. First and foremost is the specific offer (sale, percent off, etc.) highlighted on that cover. Cover imagery also plays a role, particularly if the brand is familiar to the recipient.  
Take a look at the accompanying chart, and note that we asked some respondents to think about catalogs they might receive from familiar companies, while others considered catalogs from companies they had not heard of before. All of those answering had indicated earlier in the survey that they receive and open/look through catalogs in a typical week.

Catalog cover testing2

Leveraging Consumer Research in Catalog Cover Selection

Knowing that the cover can be so important in whether a catalog is opened, TRC believes it is well worth it to devote resources to ensure that the right cover is used. While some catalog marketers will test multiple covers prior to full mail launches, it is impractical to test more than just a few. Those few are typically selected from among a broader set – based on “gut feel” or simple preferences on the part of the design team.
But what if there was an efficient, consumer data driven method to select a “winning” cover from among a broad set of candidates? TRC has developed just that method: our approach leverages our proprietary Bracket™ survey technology to submit a large number of cover designs to a tournament-type evaluation that yields rankings and relative distance across the entire set of designs. An even more streamlined approach, Message Test Express™ or MTE™, can provide similar insights for up to 16 cover designs – in around a week and for a cost of approximately $10,000.  
Considering the volume that any catalog must compete against in the typical recipient’s mailbox, isn’t it practical to maximize the likelihood that the catalog will be opened? Concise, consumer-driven metrics on likely success have been shown in our experience to be superior to “gut feel” evaluations and are certainly more affordable than in-market testing of even a small number of options. Why risk missing a great opportunity by overlooking an optimal cover execution?

Hits: 1701 0 Comments

Research new food products organicFitness and health have always been important to me, but as I’ve gotten older I’ve become even more self-aware of what I eat and where my food comes from.  A key turning point was a year and a half ago when I watched the documentary “Food, Inc.” by filmmaker Robert Kenner.  After watching it I literally was on the fence for a month contemplating becoming vegan.  But alas, my love for a good piece of steak won out.  However, it did leave an imprint on where and what type of food I buy.  My fiancé is of the same mind so when he moved in we started searching out ways to buy locally sourced food and meat from animals that are treated humanely.  Many of our friends, especially those with kids, tend to be food aware as well.  My parents on the other hand, though health and wellness is important to them, think “organic” is a big grocery money scheme.  This got me thinking…who are the most food aware?  Is there an age difference?
Using our online panel of consumers I asked a series of questions to find out.  When looking at health and wellness attitudes, eating well is important to both young and old.  Where we do see differences are those 44 or younger are more motivated to improve their health and wellness and like dining at restaurants that specialize in farm-to-table.  Bob and I are huge fans of farm-to-table restaurants and have been excited by the recent addition of a few establishments near us.

 Top-2-Box: Strongly agree 44 or younger 45 or older
Improve health and wellness 70%↑ 46%
Dine at restaurants that specialize in farm-to-table 46%↑ 26%
Up arrow indicates significantly higher value at 95% confidence level.

Across the board, younger consumers are more likely to buy organic products.  I think the only time my parents buy organic is when my brother comes to town with his little ones as he and my sister-in-law insist on organic only.

 Buy Organic Always / Usually 44 or younger
45 or older
Vegetables and fruit 69%↑ 32%
Meat 58%↑ 22%
Bath and Body Care 58%↑ 20%
Cleaning Products 53%↑ 19%
Up arrow indicates significantly higher value at 95% confidence level.

Now, when asking about participation in various “green” activities (i.e., recycling, composting, and gardening) we see no difference by age.  However, younger consumers are more likely to participate in farm co-ops and raise chickens.

 Yes % 44 or younger
45 or older
Participate in Farm Co-op 19%↑ 2%
Raise Chickens 16%↑ 3%
Up arrow indicates significantly higher value at 95% confidence level.

From our research, it appears that younger consumers are more engaged in wellness activities related to food than older consumers, even though both groups believe health and wellness to be important.  Buying organic can be expensive – so the question becomes how much are people willing to pay for organic products or meat from animals that are treated humanely.  This might be a good topic for a conjoint study which would pit various product options against one another to see how price comes into play when grocery shopping.

Hits: 1534 0 Comments

election bias new product researchSo I certainly do not follow politics closely, even during a presidential election year, which I guess could also be read as I don’t know very much about politics. But that small disclaimer aside, watching the news coverage of the recently passed Iowa Caucuses and upcoming New Hampshire primary, something struck me as peculiar in this process. These events happen in succession, not simultaneously. So first is the Iowa Caucus, then the New Hampshire primary, followed by the Nevada and South Carolina primaries, and so on with the other states.  And after each event is held the results are (almost) immediately known. So the folks in New Hampshire know the outcome from Iowa. The folks in Nevada and South Carolina know the outcomes from Iowa and New Hampshire. 

Doesn’t this lead to inherent and obvious bias? That’s the market researcher side talking. In implementing questionnaires we wouldn’t typically make known the results from previous respondents to those taking the survey later. This would surely have some influence on their answers that we wouldn’t want. We need a clean, pure read (as best as we can with surveys) as to consumer opinions and attitudes. Any deviation from this would surely compromise our data. 

But then again, is this always the case? Could there be situations in which some purposely predisposed informational bias is beneficial? I say yes! Granted one needs to be cautious and thoughtful when exposing respondents to prior information, but sometimes in order to get the specific type of response we want, a little bias is helpful. If asking about a particular product or product function, we may provide an example or guide so they can fully understand the product. E.g. 10 GB of storage is good for X number of movies and X number of songs. 

But circling back to the notion of letting respondents see the answers from previous respondents, even within the same survey, this could be quite helpful in priming folks to start thinking creatively. If we wish to gather creative ideas from consumers, it’s easy enough to ask them outright to jot something down. But it’s difficult to come up with new and creative ideas on the fly without much help. And responses we get from such tasks validate that point as many are nonsense, or short dull answers. So instead, we could show a respondent several ideas that have come up previously, either internally or from previous respondents, to jumpstart the thinking process and either edit/add onto an existing idea, or be stimulated enough to come up with their own unique idea. And truth is, it works! We at TRC implement this exact new product research technique with great success in our Idea Mill™ solution, and end up with many creative and unique ideas that our client companies use to move forward.

So while the presidential process strikes me as odd since any votes cast in other states following the Iowa Caucus may be inherently biased, there are opportunities where this sort of predisposition to information can work in our favor.

Hits: 2500

Future new product researchDecember and January are full of articles that tell us what to expect in the New Year. There is certainly nothing wrong with thinking about the future (far from it), but it is important that we do so with a few things in mind. Predications are easy to make, but hard to get right, at least consistently.

First, to some extent we all suffer from the “past results predict the future” model. We do so because quite often they do, but there is no way to know when they no longer will. As such, be wary of predictions that say something like “last year neuro research was used by 5% of fortune 500 companies…web panels hit the 5% mark and then exploded to more than 50% within three years.” It might be right to assume the two will have similar outcomes, or it might be that the two situations (both in terms of the technique and in terms of the market at the time) are quite different.

Second, we all bring a bias to our thinking. We have made business decisions based on where we think the market is going and so it is only natural that our predictions might line up with that. At TRC we’ve invested in agile products to aid in the early stage product development process. I did so because I believe the market is looking for rigorous, fast and inexpensive ways to solve problems like ideation, prioritization and concept evaluation. Quite naturally if I’m asked to predict the future I’ll tend to see these as having great potential.

Third, some people will be completely self-serving in their predictions. So, for example, we do a tremendous amount of discrete choice conjoint work. I certainly would like to think that this area will grow in the next year so I might be tempted to make the prediction in the hopes that readers will suddenly start thinking about doing a conjoint study.   

Fourth, an expert isn’t always right. Hearing predictions is useful, but ultimately you have to consider the reasoning behind them, seek out your own sources of information and consider things that you already know. Just because someone has a prediction published, doesn’t mean they know the future any better than you do. 


Want to know more?

Give us a few details so we can discuss possible solutions.

Please provide your Name.
Please provide a valid Email.
Please provide your Phone.
Please provide your Comments.
Enter code below : Enter code below :
Please Enter Correct Captcha code
Our Phone Number is 1-800-275-2827
 Find TRC on facebook  Follow us on twitter  Find TRC on LinkedIn

Our Clients